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ABSTRACT 

  Digital inclusion is vital for equitable rural transformation, especially in high-value horticulture. This study 

uses a Cragg Double Hurdle model to analyze both the decision to adopt and the extent of use of IoT-based sensors 

among 225 grape farmers in India. In the adoption stage, structured training (β = 2.80, p < 0.001) and farming 
experience (β = 0.048, p < 0.01) increase uptake, while younger age (β = –0.036, p < 0.05) and cooperative 

membership (β = –0.716, p < 0.01) have negative effects. In the usage stage, education (dy/dx = 0.0063, p < 0.001) 

and training (dy/dx = 0.0408, p < 0.001) expand sensor coverage, whereas larger farm size (–0.0171, p < 0.001), 

higher income (–0.0373, p < 0.001), and greater distance to information services (–0.0014, p < 0.001) limit use. 

Higher per-acre costs (0.0691, p < 0.001) correlate with deeper investment by commercial growers. A significant 
residual-income term (1.002, p < 0.001) confirms endogeneity, addressed via a two-stage residual inclusion method. 

Findings support Rogers’ Diffusion of Innovations and Lenton’s tipping point framework suggest integrated policies 

localized training hubs, tiered subsidies, cooperative reforms, and village-level helplines to overcome barriers to 

tipping towards sustainable digital transformation in Indian viticulture. 

Keywords: Digital inclusion, IoT sensors, Cragg Double Hurdle model, rural transformation, precision 

agriculture 
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I 

INTRODUCTION 

  The Indian agriculture is the cornerstone of the nation's economy, supporting 

livelihood of around 58 per cent of the population (FAO, 2022), on the grounds 85 

per cent of them are having farm-size less than 2 acres and contributing about 14 per 

cent to the GDP. The sector face challenges such as stagnant agricultural growth 

(Pandey & Suganthi, 2014; Nadkarni, 2022), declining crop productivity (Bhagat & 

Jadhav, 2021), rising production costs, limited resources (Ballabh and Batra, 2016), 

environmental challenges (Katke, 2019; The State of Food Security and Nutrition in 

the World 2024, 2024), and farmer indebtedness leading to suicides (Balla & Batra, 

2016; Vasavi, 2009; Merriott, 2016). Hence, to address these obstacles moving away 

from traditional methods toward modern technologies and sustainable practices are 

paramount. Smart Agriculture and Precision Agriculture (PA) are recognized as 

effective ways to leverage technology for higher productivity, resilience, and reduced 

environmental impact (Barnes et al., 2018). 

 The Internet of Things (IoT) plays a pivotal role by integrating smart sensors 

with digital platforms for continuous monitoring of soil, water usage, crop health, and 
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environmental factors, aiding in optimizing irrigation, pest detection, and input 

application (Soussi et al., 2024; Ammoniaci et al., 2021: Ayaz et al., 2019). Current 

research suggests that the anticipated technological advancements in farming in 

developing countries are not aligning with the actual situation for small-scale 

farmers. These farmers mainly rely on simple tools like phones and radios due to the 

high cost of advanced technologies. This creates disparities favoring wealthier 

farmers and marginalizing others (Somkuwar, 2018; Thuijsmanet al., 2022). 

 In India, numerous initiatives have spurred the interest of Agri-tech startups in 

offering technological solutions for agriculture (Chatterjee, 2018). However, despite 

these efforts, the uptake of smart farming practices low and faces significant 

challenges. Currently, there is a lack of information regarding how farmers employ 

precision farming (PF) technologies for decision-making and the specific costs and 

benefits associated with these technologies at the farm level (Klerkx et al., 2019; 

Rajak et al., 2023). Therefore, further research is imperative to investigate the 

adoption, application, and potential advantages of PF technologies. Understanding 

the factors influencing the adoption and deterrent of smart farming practices is 

crucial. This study aims to address this gap by examining the adoption of high-

investment, information-intensive Precision Agriculture (PA) technologies like IoT 

sensors in Indian horticulture. 

II 

LITERATURE REVIEW 

2.1 Concept 

  Precision agriculture leverages advanced technologies such as IoT, GIS, 

drones, and remote sensing to improve farm productivity, optimize inputs, and 

enhance environmental sustainability (Ramesh et al., 2022; lo et al., 2023). Among 

these, IoT systems are particularly effective in providing real-time data on soil, crop, 

and climate conditions, allowing for timely, site-specific interventions (Fondaj et al., 

2024; Loddo et al., 2020). These features are especially valuable in viticulture, which 

is highly sensitive to micro-climatic variation and terroir. Viticulture encompasses 

complex cultivation practices including canopy management, irrigation scheduling, 

and disease control require precision to maximize grape quality and yield (Smart & 

Robinson, 1991; van Leeuwen et al., 2004). While precision viticulture has gained 

momentum in advanced economies, its adoption among smallholders in developing 

regions remains underexplored. Precision Agriculture (PA): Site-specific 

management using spatial data and technologies to improve efficiency and 

productivity (Sishodia et al., 2020; Mazzetto et al., 2020; Bolfe et al., 2020). Digital 

Agriculture: An integrated ecosystem using data analytics, AI, cloud computing, and 

IoT for strategic decision-making (Klerkx et al., 2019; Dhal et al., 2024; Sott et al., 

2021). Internet of Things (IoT): Network of interconnected devices (e.g., sensors, 
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actuators) that collect, transmit, and act on real-time data (Ahmed et al., 2018; 

Khanna & Kaur, 2019; Saranya et al., 2023). IoT Sensors: Hardware components that 

monitor physical farm variables like soil moisture, temperature, and nutrients 

(Mazzetto et al., 2020; Moraes et al., 2020; Symeonaki et al., 2020). Viticulture is the 

science of grapevine cultivation, involving canopy, irrigation, and pest management 

to optimize yield and quality (Jackson, 2020). Due to its sensitivity to environmental 

(Harish, 2024) and management variables, it demands high precision (Smart & 

Robinson, 1991). This makes viticulture an ideal setting for IoT-based smart 

technologies to enhance data-driven decision-making (van Leeuwen et al., 2004). 

2.2 Adoption Dynamics of Digital Technologies 

 IoT adoption in agriculture offers notable economic and environmental 

benefits, including yield improvements, cost reductions, and market access through 

traceability, but smallholder uptake in contexts like India remains constrained by 

financial, institutional, and cognitive barriers (Balaceanu et al., 2021; Rajak et al., 

2023). Empirical evidence highlights that adoption is shaped by a combination of 

demographic, socioeconomic, and farm-level factors, often interacting nonlinearly 

across adoption stages. Age exhibits mixed effects: older farmers may resist some 

innovations yet adopt others, suggesting quadratic modeling for stage-specific 

impacts (Yue et al., 2023; Workie & Tasew, 2023). Education generally enhances 

adoption likelihood by improving information processing, particularly for 

participation decisions, though effects on intensity (Isgin et al., 2008; Siyum et al., 

2022). Farming experience, similarly, can either reinforce inertia or promote learning, 

with U-shaped relationships observed in some service-based adoptions (Kamau et al., 

2024; Yue et al., 2023). 

 Farm size consistently predicts adoption, with larger holdings favoring 

equipment ownership, whereas smaller farms may prefer service-based access (Isgin 

et al., 2008; Yue et al., 2023). Household income, credit access, and cost of 

technology strongly influence both probability and intensity, though effects vary by 

context, liquidity, and delivery mechanisms (Tang et al., 2022; Yue et al., 2023). Off-

farm income and distance to markets or information sources show context-dependent 

effects, emphasizing the need to model interactions with farm size and information 

channels (Kamau et al., 2024). Overall, the literature underscores the necessity of 

stage-specific, nonlinear, and interaction-aware frameworks to accurately capture 

adoption dynamics among smallholders, integrating behavioral, institutional, and 

technological dimensions. 

2.3 Theoretical Positioning of technology Adoption 

  Technology adoption in agriculture has traditionally been explained through 

linear frameworks such as the Diffusion of Innovations (DOI) theory, Neo-classical 

models, and institutional perspectives. The DOI model emphasizes innovation 

attributes relative advantage, compatibility, and observability along with the 
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influence of communication networks and social systems (Rogers, 2003; Looney et 

al., 2022; Feder et al., 2004; Sangeetha et al., 2023). Neo-classical models explain 

adoption as a rational economic choice, driven by benefits exceeding costs and risks 

(Feder et al., 1985; Abdulai & Huffman, 2005; Koundouri et al., 2006; Ghadim et al., 

2005). Institutional theories further highlight the importance of formal mechanisms 

such as subsidies and credit, and informal norms such as trust and collective behavior 

(Eastwood et al., 2017; Anderson & Feder, 2007; Asfaw et al., 2012; Genius et al., 

2014; Garcia et al., 2024). However, these approaches often assume a gradual, 

additive process of adoption. In contrast, Positive Tipping Point (PTP) theory (a et 

al., 2021) introduces a non-linear systems perspective, suggesting that once enabling 

conditions like access to credit, training, and supportive networks reach a critical 

threshold, adoption can accelerate rapidly through reinforcing feedback loops. This 

research aims to fill these research gaps by employing a double-hurdle model to 

examine access and usage impediments faced by grape cultivators in India.  

III 

METHODOLOGY 

3.1 Research Design and Sampling 

  This study adopts a mixed-methods approach integrating qualitative 

classification with quantitative computation to evaluate the adoption and intensity of 

use of IoT-enabled precision agriculture technologies in grape farming. The study 

employed a stratified sampling approach with purposive selection of respondents 

across two major grape-producing regions. A structured questionnaire was 

administered to a sample of 225 grape farmers across two major grape growing 

districts Nashik (Maharashtra) and Vijayapura (Karnataka). Respondents were 

categorized into adopters and non-adopters based on their use of IoT sensors and drip 

irrigation technologies. Stratified purposive sampling ensured a balanced 

representation of adopters and non-adopters. From Nashik, 75 adopters and 50 non-

adopters were sampled from Vijayapura, 50 adopters and 50 non-adopters were 

selected. This study is based on primary data collected through a structured 

household survey conducted between October 2023 and March 2024, the survey 

timeline was aligned with post-harvest and pre-pruning periods to ensure data 

accuracy and farmer availability. 

3.2 Rationale for Commodity and Region Selection 

  Limited technology adoption is evident in various commercial crops such as 

pomegranate, grapes, Chilli, banana apple, Chilli tomato, orange etc., but scattered 

around India in different states. Grapes were selected due to their high commercial 

value and sensitivity to environmental conditions, making them ideal candidates for 

precision agriculture also a greater number of technology adopters can be evident in 

grape compare to other crops. India exports over 1.6 lakh tons of grapes annually, 

predominantly from Maharashtra and Karnataka (APEDA, 2024). These regions are 
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also focal points for Agri-tech pilot projects, hosting innovations by firms such as 

Fyllo, Fasal, Crop In, and Sensartics. The agro-climatic diversity between Nashik’s 

loamy, semi-tropical soils and Vijayapura’s black cotton soils under semi-arid 

conditions allows for robust testing of IoT technology effectiveness. 

3.3 Analytical Framework 

 Integrating PTP with the double-hurdle model allows the study to capture 

both the decision to adopt (first hurdle) and the intensity of adoption (second hurdle), 

showing how micro-level decisions and institutional supports can interact to trigger 

transformative, self-sustaining digital inclusion among grape farmers in India. The 

study follows descriptive statistics to summarize socio-economic and farm-level 

variables, disaggregated by adopter status and farm size. To assess group differences, 

independent t-tests were conducted on continuous variables such as years of 

experience and distance to extension, while chi-square (χ²) tests were used for 

categorical variables like education, caste, training, and credit access. 

3.4 Model Specification 

3.4.1 Model Overview 

 The econometric model used to identify the determinants of adoption is a 

double hurdle model, as formulated by Cragg (1971). The model assumes that two 

separate hurdles must be passed before adoption of technology. The Double Hurdle 

framework separates the adoption process into two distinct stages: (1) the decision to 

adopt the technology (extensive margin), and (2) the proportion of land where the 

technology is applied (intensive margin). This approach accounts for both non-

adoption and partial adoption and full adoption. The Cragg Double Hurdle model was 

selected for this study due to its ability to distinguish between two separate stages in 

the adoption process of IoT-based smart sensor technologies: the binary decision to 

adopt and the continuous intensity of use among adopters. Unlike the Tobit model, 

which assumes that zero and positive outcomes are generated by a single underlying 

process, the double hurdle approach allows for a more flexible framework in which 

non- adoption and limited adoption are treated as outcomes of distinct decision-

making processes (Cragg, 1971; Wooldridge, 2010). This distinction is especially 

relevant in agricultural technology adoption, where some farmers may not adopt due 

to lack of awareness or institutional access, while others may adopt only partially due 

to financial or operational constraints (Nichola, 1996; Yu, Nin-Pratt, Funes, & 

Asenso-Okyere, 2011; Aristei & Perali, 2010). Moreover, the model permits different 

explanatory variables in each hurdle, enabling a richer and more accurate 

representation of real-world decision-making (Burke, 2009). Given the prevalence of 

zero observations and the theoretical justification for modeling adoption and intensity 

separately, the Cragg Double Hurdle model offers a more appropriate econometric 

framework than standard Probit, Logit, or Tobit specifications for understanding 

technology uptake behavior in Indian viticulture. 
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Stage 1: Adoption Decision (Probit Selection Model) 

Let A*_i be the latent propensity for farmer i to adopt IoT sensors. The adoption 

decision is modeled as: 

 𝐴𝑖
∗= +  

Where, 

𝐴𝑖 is unobserved adoption utility 
             is a vector of explanatory variables (e.g., training, education, experience, 

age) 

γ is a vector of parameters to be estimated 

      𝜀𝑖  is the error term assumed to follow a standard normal distribution  

The observed decision is: 

 = {
1,
0,

    𝑖𝑓 𝐴𝑖  > 0 (𝑎𝑑𝑜𝑝𝑡)
∗

otherwise
  

Stage 2: Intensity of Use (Truncated Regression) 

Conditional on adoption (𝐴𝑖= 1), the extent of adoption (e.g., proportion of land 

using IoT) is modeled as: 

 =  +   

Where, 

 is the proportion of land under IoT use 

 is a vector of explanatory variables (e.g., cost, farm size, income, 

distance) 

β is a vector of parameters to be estimated 

εi is the error term, assumed to follow a normal distribution with constant 

variance This equation is truncated at zero, accounting for the fact that 

non-adopters do not report usage levels. 

3.4.2 Multicollinearity, Endogeneity and heteroskedasticity correction 

 To verify the stability of the model estimates, we checked for 

multicollinearity among explanatory variables using the Variance Inflation Factor 

(VIF) (Gujarati & Porter, 2009). VIF values were computed separately for each set of 

covariates in the selection and outcome equations. All VIFs were below the critical 

threshold of 10, suggesting no significant multicollinearity. Given the potential 

endogeneity of farm income, we implemented a Two-Stage Residual Inclusion 

(2SRI) approach (Terza, Basu, & Rathouz, 2008; Wooldridge, 2015). In the first 

stage, log-transformed farm income was regressed on valid instruments such as land 
ownership and household structure. The residuals from this regression were then 

included in the second-stage truncated regression alongside the original income 
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variable. A statistically significant residual term indicated the presence of 

endogeneity. To ensure robust inference, all models were estimated with 

heteroskedasticity-consistent standard errors using the vce(robust) option in Stata 

(White, 1980). All econometric analyses were conducted using Stata 17.0. 

3.4.3. Final Specification 

The model jointly estimates: 

- A probit model for the probability of adoption 

- A truncated normal regression for the intensity of adoption (conditional on 

adoption) Variables include: 

- Demographic: Years of education, age, experience 

- Institutional: Access to training, extension, credit 

- Economic: farm income, cost of tech per acre, farm size 

- Instrumental: Residual farm income prediction 

IV 

RESULTS AND DISCUSSION 

4.1 Farmer Classification and Demographics 

  The adoption of agricultural technologies by grape growers in India displays a 

mix of advancements and ongoing limitations. According to data presented in Table 1 

and Figure 1 using Rogers' Diffusion of Innovations model, farmers are categorized 

into  

TABLE 1. CATEGORIZATION OF FARMERS BASED ON TECHNOLOGY ADOPTION LEVELS 

Category Percentage of 

population (%) 

Freq. Description 

Innovator 2.5 4 First movers, risk-takers with early 

access to innovations 

Early 

Adopter 

13.5 17 Opinion leaders, influence others, 

adopt after innovators 

Early 

Majority 

34 42 Thoughtful a d o p t e r s , a d o p t  

b e f o r e  t h e  average person 

Late 

Majority 

34 43 Skeptical group, adopt due to 

necessity or peer pressure 

Laggard 16 19 Conservative, tradition-bound, last to 

adopt 

Not Adopted 0 100 Farmers who have not adopted 

the innovation 
Source: Author’s calculation based on primary survey data (2023-24)  

Note: Year of adoption is base for categorical classification 
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innovators (2.5%), early adopters (13.5%), early majority (34%), late majority (34%), 

and laggards (16%). This distribution indicates a gradual adoption trend, consistent 

with the non-linear dynamics proposed by the Positive Tipping Point theory (Lenton 

et al., 2021). The acceleration of cumulative adoption occurs after a critical threshold 

of facilitating factors such as credit accessibility, training, and social networks is met. 

Spatially, most cultivated land falls within the early and late majority categories, with 

a minority remaining under laggard management (Figures 2 and 3). 

 Factors such as education, training, and institutional connections significantly 

influence adoption rates. Access to extension services, participation in cooperatives, 

and training programs demonstrate a substantial impact on adoption. These outcomes 

align with diffusion and institutional theories, emphasizing the role of social 

proximity to knowledge systems and institutional resources in driving adoption 

(Looney et al., 2022; Eastwood et al., 2017). Additionally, disparities linked to caste 

and land ownership highlight systemic inequalities affecting technology adoption 

(Table 2). 

FIGURE 1. S CURVE OF INNOVATION   

4.2 Adoption Intensity and Technology Costs 

  Further analyses on adoption intensity and economic aspects reveal that a 

considerable proportion of farmers do not adopt (44.44%), with a majority exhibiting 

low adoption intensity (41.33%). Larger adopters, managing more land (5.17–7.15 

acres), experience economies of scale with lower per-acre costs (Rs. 10,621-12,612). 

Conversely, marginal adopters face higher per-acre costs (Rs. 13,845), indicating  
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FIGURE 2. ADOPTER CLASSIFICATION AS PERCENTAGE OF NET OPERATED AREA 

financial and capacity constraints. Adoption intensity does not linearly increase with 

farm size, suggesting that broader coverage may compromise depth of 

implementation (Tables 3 and 4). These outcomes are concordant with previous 

research (Isgin et al., 2008; Siyum et al., 2022; Kamau et al., 2024), indicating that 

adoption is influenced by various socio-economic, behavioral, and institutional 

factors. The results emphasize the gradual, uneven, and scale-dependent nature of 

 

FIGURE 3. NON-ADOPTER CLASSIFICATION AS PERCENTAGE OF NET OPERATED AREA 

technology adoption and underscore the need for interventions tailored to different 

stages and scales of adoption. Early adopters should be encouraged to enhance peer 

influence, low-intensity adopters require technical support and incentives, while 

laggard-managed areas need concrete evidence and institutional backing to overcome 
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resistance. In summary, technology adoption is portrayed as a socially mediated, non-

linear process influenced by individual capacity, resource availability, and supportive 

institutional environments. 

TABLE 3. DISTRIBUTION OF FARMERS BASED ON TECHNOLOGY ADOPTION INTENSITY 

Adoption Intensity Freq. Percent 

Low 93 41.33 

Medium 32 14.22 

None 100 44.44 

TABLE 4. AREA UNDER TECHNOLOGY, ADOPTION INTENSITY, AND PER ACRE TECHNOLOGY COSTS 

IN GRAPE CULTIVATION OF ADOPTERS (n=125) 

Variable Marginal Small Medium Large Total 

Area under technology (acre) 1.90 3.41 5.17 7.15 4.95 

Adoption Intensity 1.43 1.22 1.17 1.31 1.26 

Total technology cost (Rs) 24678.57 29513.89 54664.71 57558.05 45011.84 

Technology cost (Rs./Acre) 13845.24 10290.78 12612.05 10621 11428.58 

Source: Author’s calculation based on primary survey data (2023-24) 
 

4.3 Cragg Double Hurdle Model Results 

  The Cragg Double Hurdle model's findings shed light on the factors 

influencing the adoption and usage intensity of IoT technology among grape growers, 

differentiating between the decision to adopt and the level of usage, and emphasizing 

stage-specific factors like information, economic, and structural elements. The model 

showed a strong overall fit, as evidenced by the log-likelihood value (188.53), AIC (-

339.06), and BIC (-274.24). These metrics indicate that the model effectively 

accounts for variations in farmer behaviour across both decision-making stages 

(Table 5). Economic and cost factors have diverse effects. Notably, higher 

technology costs per acre were linked to increased usage intensity (p < 0.001), 

suggesting that profit-oriented farmers invest more in quality or market demand. In 

contrast, larger farm income and size negatively affected usage intensity (p < 0.001), 

possibly due to diversification, logistical challenges, or diminishing returns in large-

scale operations. Proximity to information sources negatively influenced usage 

intensity (p < 0.001), underscoring the importance of access to advisory services, 

aligning with Eastwood et al. (2017). Training (Baig, 2005) emerged as the most 

significant and reliable factor affecting both hurdles (p < 0.001). Familiarity with 

digital tools helps farmers overcome initial hesitance, improves technical skills, and 

encourages ongoing use. This aligns with Rogers’ (2003) "knowledge" and 

"persuasion" stages, supported by Asfaw et al. (2012), highlighting training's role in 

reducing uncertainty in precision agriculture. While education did not affect 

engagement, it significantly enhanced usage intensity (p < 0.001), indicating that 
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formal education enhances the ability to effectively use complex technologies post-

adoption. This supports Feder et al. (1985), who stressed the importance of human 

capital in managing technical information. Experience significantly increased the 

likelihood of technology adoption (p = 0.003) but had little effect on usage intensity. 

Older age negatively impacted adoption (p =  

TABLE 5. CRAGG DOUBLE HURDLE MODEL RESULTS (MODEL FIT STATISTICS) 

Statistic Value 

Observations (N) 225 

Log Likelihood 188.53 

Degrees of Freedom 19 

AIC –339.06 

BIC –274.24 

Pseudo R² 2.03 

0.044), highlighting generational differences in risk tolerance and openness to 

innovation according to Rogers' adopter categories. Surprisingly, group membership 

negatively affected adoption (p = 0.009). This suggests exclusion, lack of focus on 

technology, or misalignment, contrasting with previous studies that emphasized 

group benefits. Interventions are necessary to enhance the role of social networks in 

digital adoption. Non-significant variables, such as off-farm income and experience 

in usage intensity, suggest context-specific effects or influences from other factors. A 

significant residual income term (p < 0.001) indicates that unobserved economic and 

behavioural factors, such as risk tolerance, time allocation, or unmeasured access 

constraints, also influence intensity decisions. These findings align with Rogers' DOI 

theory and the positive tipping point framework, indicating that adoption is sensitive 

to knowledge and liquidity constraints, with structural barriers impeding uptake. 

Interventions that combine training, credit access, and proximity to advisory services, 

along with tailored strategies for farm size and group engagement, are likely to 

accelerate both adoption and sustained use, helping grape technology diffusion reach 

its tipping point. 

V 

POLICY IMPLICATIONS 

The empirical evidence from our Double Hurdle analysis underscores the 

multifaceted barriers to IoT sensor adoption and sustained use among grape farmers 
in India. To translate these findings into concrete action, we propose an integrated 

policy framework comprising six interrelated strategies. 
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1. Enhance Capacity Building through Localized Training: Technology 

hubs within agricultural extension centres can effectively mitigate 

information gaps by conducting practical workshops focused on sensor 

installation and data interpretation. Mobile units equipped with IoT kits 

should be deployed to reach remote areas. Implementing a "train-the-trainer" 

model will certify farmers and officers as educators, thereby facilitating 

knowledge dissemination and promoting digital integration.  

2. Integrate Digital Literacy into Rural Education: Education plays a crucial 

role in enhancing IoT utilization. State agricultural universities and NGOs 

should develop adult education programs that focus on data management and 

sensor adjustment. Online platforms offering courses in local languages will 

expand access. These strategies ensure that technical guidance is both 

accessible and context-specific.  

3. Reform Cooperative Governance to Support Innovation: Despite the 

presence of cooperatives, the adoption of digital technology remains limited. 

Farmer Producer Organizations (FPOs) and cooperatives should introduce a 

"Digital Innovation Mandate" to initiate pilot projects and training programs. 

Establishing an "Innovation Committee" within each institution can oversee 

technology assessment and facilitate group purchases.  

4. Develop Equitable Financial Instruments: For smallholders facing 

financial constraints, a tiered subsidy system can incentivize adoption. 

Collaborate with rural banks to offer agriculture-specific loans. "Sensor-as-a-

service" payment models can reduce initial financial barriers.  

5. Implement Continuous Monitoring and Adaptive Management: A 

dashboard managed by the state agriculture department can display adoption 

rates and yield improvements. Integrating data with farmer feedback will 

enable policymakers to refine training and service delivery strategies. This 

comprehensive approach addresses the challenges of achieving digital 

inclusion and sustainable rural development in India's viticulture sector. 

VI 

CONCLUSION 

 This study utilized a Cragg double-hurdle model to analyse the factors 

influencing both the decision to adopt IoT-based smart sensors and the intensity of 

their use among grape farmers in India. This study explores the integration of IoT 

sensors in rural agricultural settings through the lens of Roger’s Innovation Lenton's 

Tipping Point framework. Our findings indicate that capacity-building initiatives, 

particularly structured training, are the most significant drivers of enhanced adoption 

and sustained application of precision agriculture technologies. Education further 

amplifies usage intensity, whereas farming experience increases the likelihood of 
adoption. Conversely, age and membership in traditional cooperatives dampen initial 

uptake, suggesting that older cohorts and existing institutional arrangements may 
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require targeted interventions to overcome inertia or misalignment with digital 

innovation. Economic constraints play a nuanced role in this regard. Although higher 

per-acre technology costs correlate with greater intensity of use, likely reflecting 

commitment on the part of commercial operators, farm income and larger farm size 

are negatively associated with the usage scale, possibly indicating that wealthier or 

larger producers diversify their investments or face logistical challenges in sensor 

deployment. Importantly, physical distance from information services emerged as a 

significant barrier to sustained use, underscoring the need to enhance proximity to 

extension support. Finally, the significant residual income term validates our 

approach to addressing endogeneity and highlights the influence of unobserved 

economic factors on adoption behaviour. Collectively, these results emphasize that 

digital inclusion in rural high-value agriculture depends not only on making 

technologies available but also on building human capital, reforming institutional 

frameworks, and designing equitable financial instruments to support farmers. 

Achieving digital inclusion in precision agriculture requires perceiving technology 

adoption as a systemic transformation, rather than a straightforward progression. 

When enabling conditions are synchronized, they can catalyze pivotal moments and 

expedite equitable rural advancement. Therefore, policy frameworks should combine 

localized, hands-on training programs with tiered subsidies and flexible financing 

while reforming cooperative governance to incentivize innovation and establish 

village-level information outposts or helplines. Future research should adopt 

longitudinal designs across multiple crops and geographies to capture dynamic 

adoption trajectories and allow causal inference. Integrating precise geospatial 

measures and variables, such as risk attitudes, market access, and intra-household 

decision-making, will further enrich our understanding. By addressing both 

informational and structural barriers to IoT uptake, stakeholders can foster an 

inclusive digital transformation that benefits both smallholders and commercial 

growers, thereby advancing equitable rural development and sustainable viticulture in 

India. This study examines IoT adoption in Indian grape farming, with broader 

relevance to high-value crops such as apples, mangoes, and vegetables in smallholder 

agriculture in Asia, Africa, and Latin America. Integrating a double-hurdle model 

with Rogers’ diffusion theory and Lenton’s tipping point framework offers a 

transferable method for analyzing impediments to access and utilization. These 

outcomes underscore the pivotal role of systemic facilitating factors, such as 

infrastructure, cost-effectiveness, and communal confidence, in instigating nonlinear 

adoption trends, presenting practical implications for policymakers, agricultural 

extension services, and technology suppliers in analogous rural environments. 

 Our study offers invaluable insights, yet it is crucial to acknowledge its 

limitations to enhance its impact. By focusing exclusively on grape growers in select 

locales, we inadvertently narrowed our scope, limiting the study's applicability across 

diverse agricultural landscapes. This focus, while insightful, restricts the broader 

resonance of our findings. Furthermore, the absence of critical factors such as risk 
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inclination, market accessibility, and gender roles may skew our results, underscoring 

the need for a more comprehensive approach. Additionally, relying on self-reported 

travel times instead of precise geospatial data introduces potential inaccuracies. To 

truly enrich our understanding of adoption trends, future research must expand its 

scope, adopt longitudinal methodologies, and incorporate precise geographical and 

comprehensive variable datasets. By doing so, we can create a more robust and 

universally applicable tapestry of insights. 
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APPENDICES 

TABLE A1. LAND CLASSIFICATION 

Land Category Landholding Size (in Acres) 

Marginal Less than 2.5 acres 

Small 2.5 – 5 acres 

Medium 5 – 10 acres 

Large More than 10 acres 

 

TABLE A2. MEAN VALUES OF KEY VARIABLES BY ADOPTION STATUS 

Adoption Status 

Years of 

Education 

Farmer's Age 

(Years) 
Farming 

Experience 

(Years) 

Distance to 

Extension (km) 

Non-Adopter 11.36 42.58 21.69 54.5 

Adopter 13.00 44.26 23.73 24.82 

Total 12.27 43.52 22.82 38.01 

 

TABLE A3. EDUCATION CLASSIFICATION 

Category Years of Education 

No Schooling 0 

Primary 1–7 

Upper Primary/Secondary 8–10 

Higher Secondary 11–12 

Undergraduate/Diploma 13–15 

Postgraduate & Above >15 

TABLE A4. CROSS-TABULATIONS BY ADOPTION STATUS FOR CATEGORICAL VARIABLE 

Variable Non-Adopters (%) Adopters (%) 

Training (No) 72.59 27.41 

Training (Yes) 2.22 97.78 

Social - SC 45.83 54.17 

Social - ST 63.16 36.84 

Social - OBC 35.94 64.06 

Social - General 45.76 54.24 

Credit - No 43.33 56.67 

Credit - Yes 44.85 55.15 

Member - No 51.96 48.04 

Member - Yes 38.21 61.79 

Land - Marginal 51.72 48.28 

Land - Small 68.18 31.82 

Land - Medium 40.24 59.76 

Land - Large 14.58 85.42 

TABLE A5. ADOPTION INTENSITY CLASSIFICATION 

Code Category Interpretation 

0 None No technology adopted 

1 Low Adoption of 1 technology 

2 Medium Adoption of 2 technologies 

3 High Adoption of 3 or more technologies 
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TABLE A6. RESULTS OF T-TEST AND CHI-SQUARE TEST 

Characteristics t-test/ Chi square (df) P value 

Years of farming experience -1.26 (223) 0.210 

Distance to information*** 7.12 <0.001 

Average number of working persons ** 2.11 0.036 

Age -1.10 0.273 

Training 108.3 (1) <0.001 

Education*** -4.21 <0.001 
Caste 4.67(3) 0.197 

Credit availability 0.04(1) 0.840 

Primary Occupation 0.57(1) 0.450 

Membership in organization** 4.27(1) 0.039 

Note: chisquare used for only Categorical variables- Training, primary occupation, Credit availability, Membership in 

organization, Caste. Significance : * p < 0.10, **p < 0.05, *** p < 0.01 

TABLE A7. VARIANCE INFLATION FACTORS (VIF) FOR DOUBLE HURDLE MODEL 

Variable Stage 1 Stage 2 

VIF 1/VIF VIF 1/VIF 

Years Education 1.35 0.741 1.27 0.789 
Training (Yes) 1.35 0.739 1.61 0.623 

Credit Facilities (yes) 1.05 0.953 1.06 0.940 

Exp Farming 1.19 0.838 2.76 0.362 

Distance to information 1.23 0.816 - - 

Cost Tech Acre 1.16 0.861 - - 

Farm size 1.33 0.753 - - 

Farm Income 1.82 0.548 1.17 0.852 

Off Farm Income - - 1.10 0.906 

Age - - 2.82 0.355 

Member Dummy - - 1.51 0.661 

Mean VIF 1.31  1.66  

Farmers were classified into adopter categories based on Rogers' Diffusion of Innovations theory (2003), which posits 

that the spread of new technologies follows a bell-shaped curve. According to this framework, the population was 

divided as follows: 

- Innovators: First 2.5% to adopt 

- Early Adopters: Next 13.5%  
- Early Majority: Next 34% 

 - Late Majority: Next 34%  

- Laggards: Last 16% 


