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ABSTRACT

Digital inclusion is vital for equitable rural transformation, especially in high-value horticulture. This study
uses a Cragg Double Hurdle model to analyze both the decision to adopt and the extent of use of IoT-based sensors
among 225 grape farmers in India. In the adoption stage, structured training (B = 2.80, p < 0.001) and farming
experience (B = 0.048, p < 0.01) increase uptake, while younger age (B = —0.036, p < 0.05) and cooperative
membership (f =-0.716, p < 0.01) have negative effects. In the usage stage, education (dy/dx = 0.0063, p < 0.001)
and training (dy/dx = 0.0408, p < 0.001) expand sensor coverage, whereas larger farm size (—0.0171, p < 0.001),
higher income (-0.0373, p < 0.001), and greater distance to information services (—0.0014, p < 0.001) limit use.
Higher per-acre costs (0.0691, p < 0.001) correlate with deeper investment by commercial growers. A significant
residual-income term (1.002, p < 0.001) confirms endogeneity, addressed via a two-stage residual inclusion method.
Findings support Rogers’ Diffusion of Innovations and Lenton’s tipping point framework suggest integrated policies
localized training hubs, tiered subsidies, cooperative reforms, and village-level helplines to overcome barriers to
tipping towards sustainable digital transformation in Indian viticulture.

Keywords: Digital inclusion, IoT sensors, Cragg Double Hurdle model, rural transformation, precision
agriculture
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1
INTRODUCTION

The Indian agriculture is the cornerstone of the nation's economy, supporting
livelihood of around 58 per cent of the population (FAO, 2022), on the grounds 85
per cent of them are having farm-size less than 2 acres and contributing about 14 per
cent to the GDP. The sector face challenges such as stagnant agricultural growth
(Pandey & Suganthi, 2014; Nadkarni, 2022), declining crop productivity (Bhagat &
Jadhav, 2021), rising production costs, limited resources (Ballabh and Batra, 2016),
environmental challenges (Katke, 2019; The State of Food Security and Nutrition in
the World 2024, 2024), and farmer indebtedness leading to suicides (Balla & Batra,
2016; Vasavi, 2009; Merriott, 2016). Hence, to address these obstacles moving away
from traditional methods toward modern technologies and sustainable practices are
paramount. Smart Agriculture and Precision Agriculture (PA) are recognized as
effective ways to leverage technology for higher productivity, resilience, and reduced
environmental impact (Barnes et al., 2018).

The Internet of Things (IoT) plays a pivotal role by integrating smart sensors
with digital platforms for continuous monitoring of soil, water usage, crop health, and
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environmental factors, aiding in optimizing irrigation, pest detection, and input
application (Soussi et al., 2024; Ammoniaci et al., 2021: Ayaz et al., 2019). Current
research suggests that the anticipated technological advancements in farming in
developing countries are not aligning with the actual situation for small-scale
farmers. These farmers mainly rely on simple tools like phones and radios due to the
high cost of advanced technologies. This creates disparities favoring wealthier
farmers and marginalizing others (Somkuwar, 2018; Thuijsmanet al., 2022).

In India, numerous initiatives have spurred the interest of Agri-tech startups in
offering technological solutions for agriculture (Chatterjee, 2018). However, despite
these efforts, the uptake of smart farming practices low and faces significant
challenges. Currently, there is a lack of information regarding how farmers employ
precision farming (PF) technologies for decision-making and the specific costs and
benefits associated with these technologies at the farm level (Klerkx et al., 2019;
Rajak et al., 2023). Therefore, further research is imperative to investigate the
adoption, application, and potential advantages of PF technologies. Understanding
the factors influencing the adoption and deterrent of smart farming practices is
crucial. This study aims to address this gap by examining the adoption of high-
investment, information-intensive Precision Agriculture (PA) technologies like IoT
sensors in Indian horticulture.

1I

LITERATURE REVIEW

2.1 Concept

Precision agriculture leverages advanced technologies such as IoT, GIS,
drones, and remote sensing to improve farm productivity, optimize inputs, and
enhance environmental sustainability (Ramesh et al., 2022; lo et al., 2023). Among
these, [oT systems are particularly effective in providing real-time data on soil, crop,
and climate conditions, allowing for timely, site-specific interventions (Fondaj et al.,
2024; Loddo et al., 2020). These features are especially valuable in viticulture, which
is highly sensitive to micro-climatic variation and terroir. Viticulture encompasses
complex cultivation practices including canopy management, irrigation scheduling,
and disease control require precision to maximize grape quality and yield (Smart &
Robinson, 1991; van Leeuwen et al., 2004). While precision viticulture has gained
momentum in advanced economies, its adoption among smallholders in developing
regions remains underexplored. Precision Agriculture (PA): Site-specific
management using spatial data and technologies to improve efficiency and
productivity (Sishodia et al., 2020; Mazzetto et al., 2020; Bolfe et al., 2020). Digital
Agriculture: An integrated ecosystem using data analytics, Al, cloud computing, and
IoT for strategic decision-making (Klerkx et al., 2019; Dhal et al., 2024; Sott et al.,
2021). Internet of Things (IoT): Network of interconnected devices (e.g., sensors,
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actuators) that collect, transmit, and act on real-time data (Ahmed et al., 2018;
Khanna & Kaur, 2019; Saranya et al., 2023). IoT Sensors: Hardware components that
monitor physical farm variables like soil moisture, temperature, and nutrients
(Mazzetto et al., 2020; Moraes et al., 2020; Symeonaki et al., 2020). Viticulture is the
science of grapevine cultivation, involving canopy, irrigation, and pest management
to optimize yield and quality (Jackson, 2020). Due to its sensitivity to environmental
(Harish, 2024) and management variables, it demands high precision (Smart &
Robinson, 1991). This makes viticulture an ideal setting for IoT-based smart
technologies to enhance data-driven decision-making (van Leeuwen et al., 2004).

2.2 Adoption Dynamics of Digital Technologies

IoT adoption in agriculture offers notable economic and environmental
benefits, including yield improvements, cost reductions, and market access through
traceability, but smallholder uptake in contexts like India remains constrained by
financial, institutional, and cognitive barriers (Balaceanu et al., 2021; Rajak et al.,
2023). Empirical evidence highlights that adoption is shaped by a combination of
demographic, socioeconomic, and farm-level factors, often interacting nonlinearly
across adoption stages. Age exhibits mixed effects: older farmers may resist some
innovations yet adopt others, suggesting quadratic modeling for stage-specific
impacts (Yue et al., 2023; Workie & Tasew, 2023). Education generally enhances
adoption likelihood by improving information processing, particularly for
participation decisions, though effects on intensity (Isgin et al., 2008; Siyum et al.,
2022). Farming experience, similarly, can either reinforce inertia or promote learning,
with U-shaped relationships observed in some service-based adoptions (Kamau et al.,
2024; Yue et al., 2023).

Farm size consistently predicts adoption, with larger holdings favoring
equipment ownership, whereas smaller farms may prefer service-based access (Isgin
et al,, 2008; Yue et al.,, 2023). Household income, credit access, and cost of
technology strongly influence both probability and intensity, though effects vary by
context, liquidity, and delivery mechanisms (Tang et al., 2022; Yue et al., 2023). Off-
farm income and distance to markets or information sources show context-dependent
effects, emphasizing the need to model interactions with farm size and information
channels (Kamau et al., 2024). Overall, the literature underscores the necessity of
stage-specific, nonlinear, and interaction-aware frameworks to accurately capture
adoption dynamics among smallholders, integrating behavioral, institutional, and
technological dimensions.

2.3 Theoretical Positioning of technology Adoption

Technology adoption in agriculture has traditionally been explained through
linear frameworks such as the Diffusion of Innovations (DOI) theory, Neo-classical
models, and institutional perspectives. The DOI model emphasizes innovation
attributes relative advantage, compatibility, and observability along with the
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influence of communication networks and social systems (Rogers, 2003; Looney et
al., 2022; Feder et al., 2004; Sangeetha et al., 2023). Neo-classical models explain
adoption as a rational economic choice, driven by benefits exceeding costs and risks
(Feder et al., 1985; Abdulai & Huffman, 2005; Koundouri et al., 2006; Ghadim et al.,
2005). Institutional theories further highlight the importance of formal mechanisms
such as subsidies and credit, and informal norms such as trust and collective behavior
(Eastwood et al., 2017; Anderson & Feder, 2007; Asfaw et al., 2012; Genius et al.,
2014; Garcia et al.,, 2024). However, these approaches often assume a gradual,
additive process of adoption. In contrast, Positive Tipping Point (PTP) theory (a et
al., 2021) introduces a non-linear systems perspective, suggesting that once enabling
conditions like access to credit, training, and supportive networks reach a critical
threshold, adoption can accelerate rapidly through reinforcing feedback loops. This
research aims to fill these research gaps by employing a double-hurdle model to
examine access and usage impediments faced by grape cultivators in India.

III
METHODOLOGY

3.1 Research Design and Sampling

This study adopts a mixed-methods approach integrating qualitative
classification with quantitative computation to evaluate the adoption and intensity of
use of loT-enabled precision agriculture technologies in grape farming. The study
employed a stratified sampling approach with purposive selection of respondents
across two major grape-producing regions. A structured questionnaire was
administered to a sample of 225 grape farmers across two major grape growing
districts Nashik (Maharashtra) and Vijayapura (Karnataka). Respondents were
categorized into adopters and non-adopters based on their use of lIoT sensors and drip
irrigation technologies. Stratified purposive sampling ensured a balanced
representation of adopters and non-adopters. From Nashik, 75 adopters and 50 non-
adopters were sampled from Vijayapura, 50 adopters and 50 non-adopters were
selected. This study is based on primary data collected through a structured
household survey conducted between October 2023 and March 2024, the survey
timeline was aligned with post-harvest and pre-pruning periods to ensure data
accuracy and farmer availability.

3.2 Rationale for Commodity and Region Selection

Limited technology adoption is evident in various commercial crops such as
pomegranate, grapes, Chilli, banana apple, Chilli tomato, orange etc., but scattered
around India in different states. Grapes were selected due to their high commercial
value and sensitivity to environmental conditions, making them ideal candidates for
precision agriculture also a greater number of technology adopters can be evident in
grape compare to other crops. India exports over 1.6 lakh tons of grapes annually,
predominantly from Maharashtra and Karnataka (APEDA, 2024). These regions are
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also focal points for Agri-tech pilot projects, hosting innovations by firms such as
Fyllo, Fasal, Crop In, and Sensartics. The agro-climatic diversity between Nashik’s
loamy, semi-tropical soils and Vijayapura’s black cotton soils under semi-arid
conditions allows for robust testing of IoT technology effectiveness.

3.3 Analytical Framework

Integrating PTP with the double-hurdle model allows the study to capture
both the decision to adopt (first hurdle) and the intensity of adoption (second hurdle),
showing how micro-level decisions and institutional supports can interact to trigger
transformative, self-sustaining digital inclusion among grape farmers in India. The
study follows descriptive statistics to summarize socio-economic and farm-level
variables, disaggregated by adopter status and farm size. To assess group differences,
independent t-tests were conducted on continuous variables such as years of
experience and distance to extension, while chi-square (¥?) tests were used for
categorical variables like education, caste, training, and credit access.

3.4 Model Specification
3.4.1 Model Overview

The econometric model used to identify the determinants of adoption is a
double hurdle model, as formulated by Cragg (1971). The model assumes that two
separate hurdles must be passed before adoption of technology. The Double Hurdle
framework separates the adoption process into two distinct stages: (1) the decision to
adopt the technology (extensive margin), and (2) the proportion of land where the
technology is applied (intensive margin). This approach accounts for both non-
adoption and partial adoption and full adoption. The Cragg Double Hurdle model was
selected for this study due to its ability to distinguish between two separate stages in
the adoption process of loT-based smart sensor technologies: the binary decision to
adopt and the continuous intensity of use among adopters. Unlike the Tobit model,
which assumes that zero and positive outcomes are generated by a single underlying
process, the double hurdle approach allows for a more flexible framework in which
non- adoption and limited adoption are treated as outcomes of distinct decision-
making processes (Cragg, 1971; Wooldridge, 2010). This distinction is especially
relevant in agricultural technology adoption, where some farmers may not adopt due
to lack of awareness or institutional access, while others may adopt only partially due
to financial or operational constraints (Nichola, 1996; Yu, Nin-Pratt, Funes, &
Asenso-Okyere, 2011; Aristei & Perali, 2010). Moreover, the model permits different
explanatory variables in each hurdle, enabling a richer and more accurate
representation of real-world decision-making (Burke, 2009). Given the prevalence of
zero observations and the theoretical justification for modeling adoption and intensity
separately, the Cragg Double Hurdle model offers a more appropriate econometric
framework than standard Probit, Logit, or Tobit specifications for understanding
technology uptake behavior in Indian viticulture.
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Stage 1: Adoption Decision (Probit Selection Model)

Let A* i be the latent propensity for farmer i to adopt IoT sensors. The adoption
decision is modeled as:

A= Zi+ Ui

Where,
A; is unobserved adoption utility
Zi is a vector of explanatory variables (e.g., training, education, experience,
age)
v is a vector of parameters to be estimated
g; 1s the error term assumed to follow a standard normal distribution

The observed decision is:
A, = {1' if Ai >0 (adopt)
0,

otherwise

Stage 2: Intensity of Use (Truncated Regression)

Conditional on adoption (4;= 1), the extent of adoption (e.g., proportion of land
using [oT) is modeled as:

Yi =Xxip+&;

Where,
Yi is the proportion of land under IoT use
Xi is a vector of explanatory variables (e.g., cost, farm size, income,
distance)
B is a vector of parameters to be estimated

& 1s the error term, assumed to follow a normal distribution with constant
variance This equation is truncated at zero, accounting for the fact that
non-adopters do not report usage levels.

3.4.2 Multicollinearity, Endogeneity and heteroskedasticity correction

To wverify the stability of the model estimates, we checked for
multicollinearity among explanatory variables using the Variance Inflation Factor
(VIF) (Gujarati & Porter, 2009). VIF values were computed separately for each set of
covariates in the selection and outcome equations. All VIFs were below the critical
threshold of 10, suggesting no significant multicollinearity. Given the potential
endogeneity of farm income, we implemented a Two-Stage Residual Inclusion
(2SRI) approach (Terza, Basu, & Rathouz, 2008; Wooldridge, 2015). In the first
stage, log-transformed farm income was regressed on valid instruments such as land
ownership and household structure. The residuals from this regression were then
included in the second-stage truncated regression alongside the original income
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variable. A statistically significant residual term indicated the presence of
endogeneity. To ensure robust inference, all models were estimated with
heteroskedasticity-consistent standard errors using the vce(robust) option in Stata
(White, 1980). All econometric analyses were conducted using Stata 17.0.

3.4.3. Final Specification
The model jointly estimates:

- A probit model for the probability of adoption

- A truncated normal regression for the intensity of adoption (conditional on
adoption) Variables include:

- Demographic: Years of education, age, experience

- Institutional: Access to training, extension, credit

- Economic: farm income, cost of tech per acre, farm size

- Instrumental: Residual farm income prediction

v
RESULTS AND DISCUSSION

4.1 Farmer Classification and Demographics

The adoption of agricultural technologies by grape growers in India displays a
mix of advancements and ongoing limitations. According to data presented in Table 1
and Figure 1 using Rogers' Diffusion of Innovations model, farmers are categorized
into
TABLE 1. CATEGORIZATION OF FARMERS BASED ON TECHNOLOGY ADOPTION LEVELS

Category Percentage of Freq. Description
population (%)

Innovator 2.5 4 First movers, risk-takers with early
access to innovations

Early 13.5 17  Opinion leaders, influence others,

Adopter adopt after innovators

Early 34 42 Thoughtful adopters, adopt

Majority before the average person

Late 34 43  Skeptical group, adopt due to

Majority necessity or peer pressure

Laggard 16 19  Conservative, tradition-bound, last to
adopt

Not Adopted 0 100 Farmers who have not adopted

the innovation

Source: Author’s calculation based on primary survey data (2023-24)
Note: Year of adoption is base for categorical classification
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innovators (2.5%), early adopters (13.5%), early majority (34%), late majority (34%),
and laggards (16%). This distribution indicates a gradual adoption trend, consistent
with the non-linear dynamics proposed by the Positive Tipping Point theory (Lenton
et al., 2021). The acceleration of cumulative adoption occurs after a critical threshold
of facilitating factors such as credit accessibility, training, and social networks is met.
Spatially, most cultivated land falls within the early and late majority categories, with
a minority remaining under laggard management (Figures 2 and 3).

Factors such as education, training, and institutional connections significantly
influence adoption rates. Access to extension services, participation in cooperatives,
and training programs demonstrate a substantial impact on adoption. These outcomes
align with diffusion and institutional theories, emphasizing the role of social
proximity to knowledge systems and institutional resources in driving adoption
(Looney et al., 2022; Eastwood et al., 2017). Additionally, disparities linked to caste
and land ownership highlight systemic inequalities affecting technology adoption
(Table 2).
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FIGURE 1. S CURVE OF INNOVATION
4.2 Adoption Intensity and Technology Costs

Further analyses on adoption intensity and economic aspects reveal that a
considerable proportion of farmers do not adopt (44.44%), with a majority exhibiting
low adoption intensity (41.33%). Larger adopters, managing more land (5.17-7.15
acres), experience economies of scale with lower per-acre costs (Rs. 10,621-12,612).
Conversely, marginal adopters face higher per-acre costs (Rs. 13,845), indicating
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FIGURE 2. ADOPTER CLASSIFICATION AS PERCENTAGE OF NET OPERATED AREA

financial and capacity constraints. Adoption intensity does not linearly increase with
farm size, suggesting that broader coverage may compromise depth of
implementation (Tables 3 and 4). These outcomes are concordant with previous
research (Isgin et al., 2008; Siyum et al., 2022; Kamau et al., 2024), indicating that
adoption is influenced by various socio-economic, behavioral, and institutional
factors. The results emphasize the gradual, uneven, and scale-dependent nature of
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FIGURE 3. NON-ADOPTER CLASSIFICATION AS PERCENTAGE OF NET OPERATED AREA

technology adoption and underscore the need for interventions tailored to different
stages and scales of adoption. Early adopters should be encouraged to enhance peer
influence, low-intensity adopters require technical support and incentives, while
laggard-managed areas need concrete evidence and institutional backing to overcome
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resistance. In summary, technology adoption is portrayed as a socially mediated, non-
linear process influenced by individual capacity, resource availability, and supportive
institutional environments.

TABLE 3. DISTRIBUTION OF FARMERS BASED ON TECHNOLOGY ADOPTION INTENSITY

Adoption Intensity Freq. Percent
Low 93 41.33
Medium 32 14.22
None 100 44.44

TABLE 4. AREA UNDER TECHNOLOGY, ADOPTION INTENSITY, AND PER ACRE TECHNOLOGY COSTS
IN GRAPE CULTIVATION OF ADOPTERS (n=125)

Variable Marginal Small Medium Large Total
Area under technology (acre) 1.90 341 5.17 7.15 4.95
Adoption Intensity 1.43 1.22 1.17 1.31 1.26
Total technology cost (Rs) 24678.57 29513.89 54664.71 57558.05 45011.84
Technology cost (Rs./Acre) 1384524 10290.78 12612.05 10621 11428.58

Source: Author’s calculation based on primary survey data (2023-24)

4.3 Cragg Double Hurdle Model Results

The Cragg Double Hurdle model's findings shed light on the factors
influencing the adoption and usage intensity of IoT technology among grape growers,
differentiating between the decision to adopt and the level of usage, and emphasizing
stage-specific factors like information, economic, and structural elements. The model
showed a strong overall fit, as evidenced by the log-likelihood value (188.53), AIC (-
339.06), and BIC (-274.24). These metrics indicate that the model effectively
accounts for variations in farmer behaviour across both decision-making stages
(Table 5). Economic and cost factors have diverse effects. Notably, higher
technology costs per acre were linked to increased usage intensity (p < 0.001),
suggesting that profit-oriented farmers invest more in quality or market demand. In
contrast, larger farm income and size negatively affected usage intensity (p < 0.001),
possibly due to diversification, logistical challenges, or diminishing returns in large-
scale operations. Proximity to information sources negatively influenced usage
intensity (p < 0.001), underscoring the importance of access to advisory services,
aligning with Eastwood et al. (2017). Training (Baig, 2005) emerged as the most
significant and reliable factor affecting both hurdles (p < 0.001). Familiarity with
digital tools helps farmers overcome initial hesitance, improves technical skills, and
encourages ongoing use. This aligns with Rogers’ (2003) "knowledge" and
"persuasion” stages, supported by Asfaw et al. (2012), highlighting training's role in
reducing uncertainty in precision agriculture. While education did not affect
engagement, it significantly enhanced usage intensity (p < 0.001), indicating that
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formal education enhances the ability to effectively use complex technologies post-
adoption. This supports Feder et al. (1985), who stressed the importance of human
capital in managing technical information. Experience significantly increased the
likelihood of technology adoption (p = 0.003) but had little effect on usage intensity.
Older age negatively impacted adoption (p =

TABLE 5. CRAGG DOUBLE HURDLE MODEL RESULTS (MODEL FIT STATISTICS)

Statistic Value
Observations (N) 225
Log Likelihood 188.53
Degrees of Freedom 19
AIC -339.06
BIC —274.24
Pseudo R? 2.03

0.044), highlighting generational differences in risk tolerance and openness to
innovation according to Rogers' adopter categories. Surprisingly, group membership
negatively affected adoption (p = 0.009). This suggests exclusion, lack of focus on
technology, or misalignment, contrasting with previous studies that emphasized
group benefits. Interventions are necessary to enhance the role of social networks in
digital adoption. Non-significant variables, such as off-farm income and experience
in usage intensity, suggest context-specific effects or influences from other factors. A
significant residual income term (p < 0.001) indicates that unobserved economic and
behavioural factors, such as risk tolerance, time allocation, or unmeasured access
constraints, also influence intensity decisions. These findings align with Rogers' DOI
theory and the positive tipping point framework, indicating that adoption is sensitive
to knowledge and liquidity constraints, with structural barriers impeding uptake.
Interventions that combine training, credit access, and proximity to advisory services,
along with tailored strategies for farm size and group engagement, are likely to
accelerate both adoption and sustained use, helping grape technology diffusion reach
its tipping point.
\%
POLICY IMPLICATIONS

The empirical evidence from our Double Hurdle analysis underscores the
multifaceted barriers to IoT sensor adoption and sustained use among grape farmers
in India. To translate these findings into concrete action, we propose an integrated
policy framework comprising six interrelated strategies.
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1. Enhance Capacity Building through Localized Training: Technology
hubs within agricultural extension centres can effectively mitigate
information gaps by conducting practical workshops focused on sensor
installation and data interpretation. Mobile units equipped with IoT Kkits
should be deployed to reach remote areas. Implementing a "train-the-trainer"
model will certify farmers and officers as educators, thereby facilitating
knowledge dissemination and promoting digital integration.

2. Integrate Digital Literacy into Rural Education: Education plays a crucial
role in enhancing IoT utilization. State agricultural universities and NGOs
should develop adult education programs that focus on data management and
sensor adjustment. Online platforms offering courses in local languages will
expand access. These strategies ensure that technical guidance is both
accessible and context-specific.

3. Reform Cooperative Governance to Support Innovation: Despite the
presence of cooperatives, the adoption of digital technology remains limited.
Farmer Producer Organizations (FPOs) and cooperatives should introduce a
"Digital Innovation Mandate" to initiate pilot projects and training programs.
Establishing an "Innovation Committee" within each institution can oversee
technology assessment and facilitate group purchases.

4. Develop Equitable Financial Instruments: For smallholders facing
financial constraints, a tiered subsidy system can incentivize adoption.
Collaborate with rural banks to offer agriculture-specific loans. "Sensor-as-a-
service" payment models can reduce initial financial barriers.

5. Implement Continuous Monitoring and Adaptive Management: A
dashboard managed by the state agriculture department can display adoption
rates and yield improvements. Integrating data with farmer feedback will
enable policymakers to refine training and service delivery strategies. This
comprehensive approach addresses the challenges of achieving digital
inclusion and sustainable rural development in India's viticulture sector.

VI
CONCLUSION

This study utilized a Cragg double-hurdle model to analyse the factors
influencing both the decision to adopt loT-based smart sensors and the intensity of
their use among grape farmers in India. This study explores the integration of lIoT
sensors in rural agricultural settings through the lens of Roger’s Innovation Lenton's
Tipping Point framework. Our findings indicate that capacity-building initiatives,
particularly structured training, are the most significant drivers of enhanced adoption
and sustained application of precision agriculture technologies. Education further
amplifies usage intensity, whereas farming experience increases the likelihood of
adoption. Conversely, age and membership in traditional cooperatives dampen initial
uptake, suggesting that older cohorts and existing institutional arrangements may
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require targeted interventions to overcome inertia or misalignment with digital
innovation. Economic constraints play a nuanced role in this regard. Although higher
per-acre technology costs correlate with greater intensity of use, likely reflecting
commitment on the part of commercial operators, farm income and larger farm size
are negatively associated with the usage scale, possibly indicating that wealthier or
larger producers diversify their investments or face logistical challenges in sensor
deployment. Importantly, physical distance from information services emerged as a
significant barrier to sustained use, underscoring the need to enhance proximity to
extension support. Finally, the significant residual income term validates our
approach to addressing endogeneity and highlights the influence of unobserved
economic factors on adoption behaviour. Collectively, these results emphasize that
digital inclusion in rural high-value agriculture depends not only on making
technologies available but also on building human capital, reforming institutional
frameworks, and designing equitable financial instruments to support farmers.
Achieving digital inclusion in precision agriculture requires perceiving technology
adoption as a systemic transformation, rather than a straightforward progression.
When enabling conditions are synchronized, they can catalyze pivotal moments and
expedite equitable rural advancement. Therefore, policy frameworks should combine
localized, hands-on training programs with tiered subsidies and flexible financing
while reforming cooperative governance to incentivize innovation and establish
village-level information outposts or helplines. Future research should adopt
longitudinal designs across multiple crops and geographies to capture dynamic
adoption trajectories and allow causal inference. Integrating precise geospatial
measures and variables, such as risk attitudes, market access, and intra-household
decision-making, will further enrich our understanding. By addressing both
informational and structural barriers to IoT uptake, stakeholders can foster an
inclusive digital transformation that benefits both smallholders and commercial
growers, thereby advancing equitable rural development and sustainable viticulture in
India. This study examines IoT adoption in Indian grape farming, with broader
relevance to high-value crops such as apples, mangoes, and vegetables in smallholder
agriculture in Asia, Africa, and Latin America. Integrating a double-hurdle model
with Rogers’ diffusion theory and Lenton’s tipping point framework offers a
transferable method for analyzing impediments to access and utilization. These
outcomes underscore the pivotal role of systemic facilitating factors, such as
infrastructure, cost-effectiveness, and communal confidence, in instigating nonlinear
adoption trends, presenting practical implications for policymakers, agricultural
extension services, and technology suppliers in analogous rural environments.

Our study offers invaluable insights, yet it is crucial to acknowledge its
limitations to enhance its impact. By focusing exclusively on grape growers in select
locales, we inadvertently narrowed our scope, limiting the study's applicability across
diverse agricultural landscapes. This focus, while insightful, restricts the broader
resonance of our findings. Furthermore, the absence of critical factors such as risk
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inclination, market accessibility, and gender roles may skew our results, underscoring
the need for a more comprehensive approach. Additionally, relying on self-reported
travel times instead of precise geospatial data introduces potential inaccuracies. To
truly enrich our understanding of adoption trends, future research must expand its
scope, adopt longitudinal methodologies, and incorporate precise geographical and
comprehensive variable datasets. By doing so, we can create a more robust and
universally applicable tapestry of insights.
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APPENDICES
TABLE Al. LAND CLASSIFICATION

Land Category Landholding Size (in Acres)
Marginal Less than 2.5 acres

Small 2.5-5 acres

Medium 5—10 acres

Large More than 10 acres

TABLE A2. MEAN VALUES OF KEY VARIABLES BY ADOPTION STATUS

Years of Farmer's Age Farming Distance to
Adoption Status Education (Years) Experience Extension (km)
(Years)
Non-Adopter 11.36 42.58 21.69 54.5
Adopter 13.00 4426 23.73 24.82
Total 12.27 43.52 22.82 38.01
TABLE A3. EDUCATION CLASSIFICATION
Category Years of Education
No Schooling 0
Primary 1-7
Upper Primary/Secondary 8-10
Higher Secondary 11-12
Undergraduate/Diploma 13-15
Postgraduate & Above >15
TABLE A4. CROSS-TABULATIONS BY ADOPTION STATUS FOR CATEGORICAL VARIABLE
Variable Non-Adopters (%) Adopters (%)
Training (No) 72.59 2741
Training (Yes) 222 97.78
Social - SC 45.83 54.17
Social - ST 63.16 36.84
Social - OBC 3594 64.06
Social - General 45.76 54.24
Credit - No 4333 56.67
Credit - Yes 44.85 55.15
Member - No 51.96 48.04
Member - Yes 3821 61.79
Land - Marginal 51.72 48.28
Land - Small 68.18 31.82
Land - Medium 40.24 59.76
Land - Large 14.58 85.42
TABLE A5. ADOPTION INTENSITY CLASSIFICATION
Code Category Interpretation
0 None No technology adopted
1 Low Adoption of 1 technology
2 Medium Adoption of 2 technologies
3 High Adoption of 3 or more technologies
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TABLE A6. RESULTS OF T-TEST AND CHI-SQUARE TEST

Characteristics t-test/ Chi square (df) P value
Years of farming experience -1.26 (223) 0.210
Distance to information*** 7.12 <0.001
Average number of working persons ** 2.11 0.036
Age -1.10 0.273
Training 108.3 (1) <0.001
Education*** -4.21 <0.001
Caste 4.67(3) 0.197
Credit availability 0.04(1) 0.840
Primary Occupation 0.57(1) 0.450
Membership in organization** 4.27(1) 0.039

Note: chisquare used for only Categorical variables- Training, primary occupation, Credit availability, Membership in
organization, Caste. Significance : * p <0.10, **p < 0.05, *** p <0.01

TABLE A7. VARIANCE INFLATION FACTORS (VIF) FOR DOUBLE HURDLE MODEL

Variable Stage 1 Stage 2

VIF 1/VIF VIF 1/VIF
Years Education 1.35 0.741 1.27 0.789
Training (Yes) 1.35 0.739 1.61 0.623
Credit Facilities (yes) 1.05 0.953 1.06 0.940
Exp Farming 1.19 0.838 2.76 0.362
Distance to information 123 0.816 - -
Cost Tech Acre 1.16 0.861 - -
Farm size 1.33 0.753 - -
Farm Income 1.82 0.548 1.17 0.852
Off Farm Income - - 1.10 0.906
Age - - 2.82 0.355
Member Dummy - - 1.51 0.661
Mean VIF 1.31 1.66

Farmers were classified into adopter categories based on Rogers' Diffusion of Innovations theory (2003), which posits
that the spread of new technologies follows a bell-shaped curve. According to this framework, the population was
divided as follows:

- Innovators: First 2.5% to adopt

- Early Adopters: Next 13.5%

- Early Majority: Next 34%

- Late Majority: Next 34%

- Laggards: Last 16%



